Contents

List of Figures xix
List of Tables xxix
List of Boxes xxxi
Preface xxxiii
Changes in Second Edition xxxix
Acknowledgments xli
Authors xliii
Physical Quantities and Constants xlv
List of Acronyms xlvii

Chapter 1 • Introduction 1

1.1 IMPORTANCE OF PROTEINS IN LIVING ORGANISMS 1
1.1.1 Life, proteins and mysterious forces 1
1.1.2 Molecular organization of living organisms 2
1.1.3 Proteins have numerous biological roles 6
 1.1.3.1 Catalysis of metabolic processes 6
 1.1.3.2 Energy transfer 8
 1.1.3.3 Gene expression 11
 1.1.3.4 Transport of solutes across biological membranes 13
 1.1.3.5 Cellular communication 13
 1.1.3.6 Molecular recognition 16
 1.1.3.7 Defense 17
 1.1.3.8 Forming intracellular and extracellular structures 19
 1.1.3.9 Cell- and tissue-specific functions 20
1.1.4 Physiological and evolutionary importance of proteins 22
1.1.5 Medical, industrial, and social importance of proteins 22
 1.1.5.1 Proteins as drug targets 22
 1.1.5.2 Proteins as toxin targets 23
 1.1.5.3 Industrial applications of proteins 24
1.2 STRUCTURAL COMPLEXITY AND ITS EFFECT ON PROTEIN FUNCTION 25
Chapter 2 • Protein Structure
2.3.5 Reverse turns 133
 2.3.5.1 β-turn 133
 2.3.5.2 Loops 134
2.3.6 Secondary structure preferences of amino acids 135
 2.3.6.1 α-helix 135
 2.3.6.2 β conformation 137
2.4 TERTIARY STRUCTURE 139
 2.4.1 Basic properties of tertiary structure 141
 2.4.1.1 Structural properties required for complex function 141
 2.4.1.2 Core versus surface 141
 2.4.1.3 Stabilizing forces 143
 2.4.2 Architecture of proteins 143
 2.4.2.1 Simple folding motifs 143
 2.4.2.2 Complex folds 150
 2.4.2.3 Domains 161
 2.4.2.4 Protein classification 167
 2.4.2.5 Knotted proteins 173
 2.4.3 Evolutionary conservation of structure and function in proteins 174
 2.4.3.1 Interests of individual versus those of species 174
 2.4.3.2 Structure conservation: evolutionary mechanisms 176
 2.4.3.3 Evolution of function 179
 2.4.4 Water molecules inside proteins 180
2.5 QUATERNARY STRUCTURE 182
 2.5.1 Introduction 182
 2.5.2 Characteristics 183
 2.5.2.1 Dimensions and complexity 183
 2.5.2.2 Symmetry 183
 2.5.2.3 Subunit interactions 185
 2.5.3 Advantages of quaternary structure 186
2.6 POST-TRANSLATIONAL MODIFICATIONS 188
 2.6.1 Introduction 188
 2.6.2 Phosphorylation 191
 2.6.3 Glycosylation 193
 2.6.4 Acylation 195
 2.6.4.1 ε-N-acetylation 195
 2.6.4.2 N’-myristoylation and S-palmitoylation 196
 2.6.4.3 Ubiquitination and SUMOylation 197
2.6.5 Alkylation
2.6.5.1 Methylation
2.6.5.2 S-prenylation
2.6.5.3 Adenylation
2.6.6 Hydroxylation and oxidation
2.6.7 Proteolysis
2.6.8 Amidation
2.6.9 Addition of metal ions
2.6.9.1 Stabilization of protein structure
2.6.9.2 Ligand binding
2.6.9.3 Electron transport
2.6.9.4 Enzymatic catalysis
2.6.10 Mixed modifications
2.6.11 Pathological aspects of post-translational modifications
2.6.11.1 Cancer
2.6.11.2 Age-related illnesses
2.6.12 Identifying post-translational modifications

2.7 FIBROUS PROTEINS
2.7.1 Fiber-based structures inside and outside cells
2.7.1.1 Mechanical support
2.7.1.2 Tissue organization and cell-environment communication
2.7.1.3 Motion
2.7.1.4 External structures
2.7.1.5 Other roles
2.7.2 Fiber-forming versus fibrous proteins
2.7.3 Structural differences between globular and fibrous proteins
2.7.4 Structure-function relationships in helical proteins α-keratin and collagen
2.7.4.1 α-Keratin
2.7.4.2 Collagen

2.8 SUMMARY
EXERCISES
REFERENCES

Chapter 3 • Methods of Structure Determination and Prediction

3.1 INTRODUCTION
3.2 DIFFRACTION AND SCATTERING METHODS
3.2.1 X-ray diffraction and scattering
 3.2.1.1 Principles 261
 3.2.1.2 Steps of procedure 262
 3.2.1.3 Information obtained from crystallography 263
 3.2.1.4 Problems of method 266
 3.2.1.5 X-ray scattering 267
3.2.2 Neutron scattering
 3.2.2.1 Principles 270
 3.2.2.2 Advantages and shortcomings 272
3.2.3 Electron microscopy (EM)
 3.2.3.1 Principles 273
 3.2.3.2 Advantages and shortcomings 277
3.3 SPECTROSCOPIC METHODS 278
 3.3.1 Nuclear magnetic resonance (NMR) spectroscopy
 3.3.1.1 Principles 278
 3.3.1.2 Steps in protein structure determination by NMR spectroscopy 280
 3.3.1.3 Advantages and shortcomings 282
 3.3.2 Electron paramagnetic resonance (EPR) spectroscopy 283
 3.3.3 Information derived from other methods 284
 3.3.3.1 Fluorescent spectroscopy 284
 3.3.3.2 Circular dichroism spectroscopy 285
 3.3.3.3 Mass spectrometry 286
3.4 COMPUTATIONAL METHODS FOR STRUCTURE PREDICTION 291
 3.4.1 Introduction 291
 3.4.2 Ab initio (physical) approach 292
 3.4.2.1 Calculating total potential energy of system 292
 3.4.2.2 Sampling configurational space of system 294
 3.4.2.3 Limitations and partial solutions 297
 3.4.3 Template-based (comparative) approach 307
 3.4.3.1 Introduction 307
 3.4.3.2 Homology modeling 308
 3.4.3.3 Fold recognition via threading 315
 3.4.4 Integrative and fragment-based methods 317
 3.4.5 Prediction assessment and verification 324
3.5 EXPERIMENTALLY GUIDED COMPUTATIONAL PREDICTION 325
 3.5.1 Introduction 325
Chapter 4 Energetics and Protein Stability 355

4.1 BASIC PRINCIPLES OF THERMODYNAMICS 355
4.1.1 Introduction 355
4.1.2 Free energy and spontaneous processes 356
4.1.3 Enthalpy, entropy, and molecular thermodynamics 358
 4.1.3.1 Enthalpy 358
 4.1.3.2 Entropy 363
 4.1.3.3 Computational approaches focus on individual interactions 364
4.1.4 Thermodynamics and protein structure 365

4.2 PROTEIN STABILITY AND FORCES INVOLVED 365
4.2.1 How stable are proteins? 365
4.2.2 Dominant driving forces 366
 4.2.2.1 Nonpolar interactions (ΔG_{np}) 367
 4.2.2.2 Configurational entropy effect ($-T\Delta S_{con}$) 369
4.2.3 Electrostatic interactions (ΔG_{elec}) 371
4.2.4 van der Waals interactions (ΔG_{vdW}) 375
4.2.5 Summary and conclusions 375

4.3 PROTEIN DENATURATION AND ADAPTATION TO EXTREME CONDITIONS 377
4.3.1 Denaturation as experimental tool 377
 4.3.1.1 Temperature-dependent denaturation 378
 4.3.1.2 pH-dependent denaturation 379
 4.3.1.3 Pressure-induced denaturation 379
 4.3.1.4 Chemical denaturation 379
4.3.2 Adaptation of proteins to extreme environments 380
4.3.3 Conclusions 382

4.4 STABILITY ENHANCEMENT OF INDUSTRIAL ENZYMES USING PROTEIN
ENGINEERING 383
4.4.1 Enzymes in industry 383
4.4.2 Enzyme engineering 384
4.4.3 Rational engineering of enzymes for increased stability 384
4.5 SUMMARY
EXERCISES
REFERENCES

Chapter 5 • Protein Dynamics

5.1 INTRODUCTION

5.2 PROTEIN FOLDING
5.2.1 Kinetic aspects
5.2.1.1 Levinthal’s paradox and energy landscape theory
5.2.1.2 Folding models and mechanisms
5.2.2 In vivo folding
5.2.2.1 In vivo factors that complicate folding
5.2.2.2 Assisted folding

5.3 FOLDED STATE DYNAMICS
5.3.1 Spontaneous dynamics
5.3.1.1 Proteins are conformational ensembles
5.3.1.2 Statistical-thermodynamic view of protein dynamics
5.3.1.3 Dynamics of disordered proteins
5.3.1.4 Biological significance of thermally induced conformational changes
5.3.1.5 Effects of solvents on protein dynamics
5.3.2 External effects on protein dynamics
5.3.2.1 Ligand-induced dynamics and allostery
5.3.2.2 Dynamics induced by environmental changes
5.3.2.3 Enzyme-mediated protein dynamics

5.4 METHODS FOR STUDYING PROTEIN DYNAMICS
5.4.1 Tools for studying slow (ms–sec) to intermediate (ns–μs) motions
5.4.1.1 Tools for studying rapid motions (fs–ps)

5.5 SUMMARY
EXERCISES
REFERENCES

Chapter 6 • Intrinsically Unstructured Proteins

6.1 INTRODUCTION
6.1.1 Molecular recognition
6.1.2 Entropic chain activity
Chapter 7 • Membrane Proteins

7.4.1 Lipid bilayer effects on membrane proteins
7.4.1.1 Effects of general bilayer properties
7.4.1.2 Effects of specific bilayer lipids
7.4.2 Effects of membrane proteins on lipid bilayer properties
7.4.2.1 Decrease in mobility
7.4.2.2 Deformation and curvature changes

7.5 G PROTEIN-COUPLED RECEPTORS
7.5.1 Introduction
7.5.2 GPCR signaling
7.5.2.1 General view
7.5.2.2 G-protein mechanisms and regulation
7.5.3 GPCR structure
7.5.3.1 General features
7.5.3.2 Structural variations among GPCRs
7.5.4 GPCR and G-protein activation
7.5.4.1 Structural changes in GPCRs upon activation
7.5.4.2 Agonist effect and G-protein activation
7.5.5 GPCR desensitization
7.5.6 GPCRs of other classes
7.5.6.1 Class B GPCRs
7.5.6.2 Class C GPCRs
7.5.6.3 Class F GPCRs
7.5.7 GPCR-targeting drugs

7.6 SUMMARY

EXERCISES
REFERENCES

Chapter 8 • Protein-Ligand Interactions

8.1 INTRODUCTION
8.2 THEORIES ON PROTEIN-LIGAND BINDING AND DYNAMICS
8.3 PROTEIN-LIGAND BINDING ENERGETICS
8.3.1 Total binding free energy
8.3.1.1 Protein-ligand binding displays diverse affinities
8.3.1.2 Calculating absolute binding free energy
8.3.1.3 Calculating relative binding energies
8.3.2 Thermodynamic determinants of binding energy
8.4 LIGAND-BINDING SITES
8.4.1 Overview
8.4.2 Geometric complementarity
8.4.3 Electrostatic complementarity
8.4.4 Binding specificity and promiscuity

8.5 PROTEIN-PROTEIN INTERACTIONS
8.5.1 Overview
8.5.2 Protein-protein binding domains
8.5.3 Structure-function relationships
8.5.3.1 Protein-protein interface
8.5.3.2 PPII helices in protein-protein interactions
8.5.4 Effect of molecular crowding on protein-protein interactions

8.6 PROTEIN-LIGAND INTERACTIONS IN DRUG ACTION AND DESIGN
8.6.1 Involvement of proteins in disease
8.6.2 How pharmaceutical drugs work
8.6.2.1 Principal modes of action
8.6.2.2 Selectivity and side effects
8.6.3 Drug development and design
8.6.3.1 General sources of pharmaceutical drugs
8.6.3.2 Drug development process
8.6.3.3 Principal steps in rational drug design
8.6.3.4 Rational drug design case study: ACE inhibitors

8.7 SUMMARY

EXERCISES
REFERENCES

Chapter 9 Enzymatic Catalysis

9.1 INTRODUCTION
9.1.1 Metabolic needs of cells
9.1.2 Cellular processes must be catalyzed in order to sustain life
9.1.3 Why were enzymes selected as biocatalysts?
9.1.4 Why is it important to understand enzyme action?
9.1.5 Enzyme classification
9.1.5.1 Oxidoreductases (EC 1)
9.1.5.2 Transferases (EC 2)
9.1.5.3 Hydrolases (EC 3)
9.1.5.4 Lyases (EC 4) 774
9.1.5.5 Isomerases (EC 5) 778
9.1.5.6 Ligases (EC 6) 779
9.1.5.7 Catalytic promiscuity 781

9.2 ENZYME KINETICS 783
9.2.1 Basic concepts 784
9.2.2 Michaelis-Menten model 786
9.2.3 Use of Michaelis-Menten kinetic parameters for enzyme analysis 791
 9.2.3.1 Enzyme-substrate affinity 791
 9.2.3.2 Enzyme efficiency and specificity 792
 9.2.3.3 Enzyme proficiency 794
9.2.4 Limitations of M–M formalism 794

9.3 HOW DO ENZYMES CATALYZE REACTIONS? 795
9.3.1 Overview 795
9.3.2 Binding specificity and selectivity 796
9.3.3 Catalysis 799
 9.3.3.1 Substrate confinement 802
 9.3.3.2 Electrostatic preorganization and noncovalent stabilization of transition state 803
 9.3.3.3 Covalent catalysis and electronic polarization of substrate bonds 807
 9.3.3.4 Metal ion catalysis 814
 9.3.3.5 General acid-base catalysis 817
 9.3.3.6 Mechanisms related to protein dynamics 821

9.4 ENZYME COFACTORS 824
9.4.1 Overview 824
9.4.2 Chemical characteristics of organic cofactors 830
9.4.3 Functional characteristics 833

9.5 ENZYME INHIBITION 833
9.5.1 Overview 833
9.5.2 Modes of enzyme inhibition 834
 9.5.2.1 Reversible inhibition 835
 9.5.2.2 Irreversible inhibition 845

9.6 INDUSTRIAL USES OF ENZYMES 848
9.6.1 Medical uses of enzymes 848
 9.6.1.1 Drugs and drug targets 848
 9.6.1.2 Diagnostic roles 849
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6.2 Use of enzymes as industrial catalysts</td>
<td>850</td>
</tr>
<tr>
<td>9.6.3 Limitations and solutions</td>
<td>853</td>
</tr>
<tr>
<td>9.7 SUMMARY</td>
<td>855</td>
</tr>
<tr>
<td>EXERCISES</td>
<td>856</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>868</td>
</tr>
<tr>
<td>APPENDIX: ENZYME NOMENCLATURE RECOMMENDATIONS OF THE NC-IUBMB</td>
<td>881</td>
</tr>
</tbody>
</table>

Index 891