Contents

List of Figures xix
List of Tables xxix
List of Boxes xxxi
Preface xxxiii
Changes in Second Edition xxxix
Acknowledgments xli
Authors xliii
Physical Quantities and Constants xlv
List of Acronyms xlvii
Chapter 1•Introduction 1
1.1 IMPORTANCE OF PROTEINS IN LIVING ORGANISMS 1
1.1.1 Life, proteins and mysterious forces 1
1.1.2 Molecular organization of living organisms 2
1.1.3 Proteins have numerous biological roles 6
1.1.3.1 Catalysis of metabolic processes 6
1.1.3.2 Energy transfer 8
1.1.3.3 Gene expression 11
1.1.3.4 Transport of solutes across biological membranes 13
1.1.3.5 Cellular communication 13
1.1.3.6 Molecular recognition 16
1.1.3.7 Defense 17
1.1.3.8 Forming intracellular and extracellular structures 19
1.1.3.9 Cell- and tissue-specific functions 20
1.1.4 Physiological and evolutionary importance of proteins 22
1.1.5 Medical, industrial, and social importance of proteins 22
1.1.5.1 Proteins as drug targets 22
1.1.5.2 Proteins as toxin targets 23
1.1.5.3 Industrial applications of proteins 24
1.2 STRUCTURAL COMPLEXITY AND ITS EFFECT ON PROTEIN FUNCTION 25
1.3 NONCOVALENT INTERACTIONS BETWEEN ATOMS IN BIOMOLECULES 29
1.3.1 Electrostatic interactions 31
1.3.1.1 Introduction 31
1.3.1.2 Basic principles 32
1.3.1.3 Hydrogen bonds 44
1.3.1.4 Other types of electrostatic interactions 45
1.3.2 Van der Waals interactions 50
1.3.3 Nonpolar interactions and hydrophobic effect 53
1.3.4 Conclusions 55
1.4 SUMMARY 56
1.5 ORGANIZATION OF BOOK 56
EXERCISES 57
REFERENCES 57
Chapter 2•Protein Structure 65
2.1 INTRODUCTION 65
2.1.1 Hierarchy in protein structure 65
2.1.2 Coenzymes and prosthetic groups 66
2.2 PRIMARY STRUCTURE 71
2.2.1 Amino acids and their properties 72
2.2.1.1 Amino acid structure 72
2.2.1.2 Configurations of amino acids 77
2.2.1.3 Side chain properties 79
2.2.1.4 Amino acid derivates in proteins 104
2.2.2 Peptide bond 110
2.3 SECONDARY STRUCTURE 113
2.3.1 $\quad \alpha$-helix 122
2.3.1.1 Geometry 122
2.3.1.2 Intramolecular interactions 122
2.3.1.3 Amphipathic α-helices 123
2.3.2 Non- α-helices 124
2.3.2.1 $\quad 3_{10}$-helix 124
2.3.2.2 $\quad \pi$-helix 125
2.3.2.3 Type II polyproline helix (PPII) 126
2.3.3 $\quad \beta$ conformation 129
2.3.4 Why helices and sheets? 130
2.3.5 Reverse turns 133
2.3.5.1 β-turn 133
2.3.5.2 Loops 134
2.3.6 Secondary structure preferences of amino acids 135
2.3.6.1 α-helix 135
2.3.6.2 $\quad \beta$ conformation 137
2.4 TERTIARY STRUCTURE 139
2.4.1 Basic properties of tertiary structure 141
2.4.1.1 Structural properties required for complex function 141
2.4.1.2 Core versus surface 141
2.4.1.3 Stabilizing forces 143
2.4.2 Architecture of proteins 143
2.4.2.1 Simple folding motifs 143
2.4.2.2 Complex folds 150
2.4.2.3 Domains 161
2.4.2.4 Protein classification 167
2.4.2.5 Knotted proteins 173
2.4.3 Evolutionary conservation of structure and function in proteins 174
2.4.3.1 Interests of individual versus those of species 174
2.4.3.2 Structure conservation: evolutionary mechanisms 176
2.4.3.3 Evolution of function 179
2.4.4 Water molecules inside proteins 180
2.5 QUATERNARY STRUCTURE 182
2.5.1 Introduction 182
2.5.2 Characteristics 183
2.5.2.1 Dimensions and complexity 183
2.5.2.2 Symmetry 183
2.5.2.3 Subunit interactions 185
2.5.3 Advantages of quaternary structure 186
2.6 POST-TRANSLATIONAL MODIFICATIONS 188
2.6.1 Introduction 188
2.6.2 Phosphorylation 191
2.6.3 Glycosylation 193
2.6.4 Acylation 195
2.6.4.1 $\quad \varepsilon$ - N-acetylation 195
2.6.4.2 $\quad N^{\prime}$-myristoylation and S-palmitoylation 196
2.6.4.3 Ubiquitination and SUMOylation 197
2.6.5 Alkylation 198
2.6.5.1 Methylation 198
2.6.5.2 S-prenylation 199
2.6.5.3 Adenylation 199
2.6.6 Hydroxylation and oxidation 199
2.6.7 Proteolysis 200
2.6.8 Amidation 200
2.6.9 Addition of metal ions 200
2.6.9.1 Stabilization of protein structure 201
2.6.9.2 Ligand binding 201
2.6.9.3 Electron transport 201
2.6.9.4 Enzymatic catalysis 202
2.6.10 Mixed modifications 204
2.6.11 Pathological aspects of post-translational modifications 205
2.6.11.1 Cancer 205
2.6.11.2 Age-related illnesses 207
2.6.12 Identifying post-translational modifications 208
2.7 FIBROUS PROTEINS 209
2.7.1 Fiber-based structures inside and outside cells 209
2.7.1.1 Mechanical support 209
2.7.1.2 Tissue organization and cell-environment communication 214
2.7.1.3 Motion 216
2.7.1.4 External structures 218
2.7.1.5 Other roles 219
2.7.2 Fiber-forming versus fibrous proteins 221
2.7.3 Structural differences between globular and fibrous proteins 221
2.7.4 Structure-function relationships in helical proteins α-keratin and collagen 223
2.7.4.1 α-Keratin 223
2.7.4.2 Collagen 224
2.8 SUMMARY 232
EXERCISES 233
REFERENCES 235
Chapter $3 \cdot$ Methods of Structure Determination and Prediction 259
3.1 INTRODUCTION 259
3.2 DIFFRACTION AND SCATTERING METHODS 260
3.2.1 \quad X-ray diffraction and scattering 261
3.2.1.1 Principles 261
3.2.1.2 Steps of procedure 262
3.2.1.3 Information obtained from crystallography 263
3.2.1.4 Problems of method 266
3.2.1.5 \quad X-ray scattering 267
3.2.2 Neutron scattering 270
3.2.2.1 Principles 270
3.2.2.2 Advantages and shortcomings 272
3.2.3 Electron microscopy (EM) 273
3.2.3.1 Principles 273
3.2.3.2 Advantages and shortcomings 277
3.3 SPECTROSCOPIC METHODS 278
3.3.1 Nuclear magnetic resonance (NMR) spectroscopy 278
3.3.1.1 Principles 278
3.3.1.2 Steps in protein structure determination by NMR spectroscopy 280
3.3.1.3 Advantages and shortcomings 282
3.3.2 Electron paramagnetic resonance (EPR) spectroscopy 283
3.3.3 Information derived from other methods 284
3.3.3.1 Fluorescent spectroscopy 284
3.3.3.2 Circular dichroism spectroscopy 285
3.3.3.3 Mass spectrometry 286
3.4 COMPUTATIONAL METHODS FOR STRUCTURE PREDICTION 291
3.4.1 Introduction 291
3.4.2 Ab initio (physical) approach 292
3.4.2.1 Calculating total potential energy of system 292
3.4.2.2 Sampling configurational space of system 294
3.4.2.3 Limitations and partial solutions 297
3.4.3 Template-based (comparative) approach 307
3.4.3.1 Introduction 307
3.4.3.2 Homology modeling 308
3.4.3.3 Fold recognition via threading 315
3.4.4 Integrative and fragment-based methods 317
3.4.5 Prediction assessment and verification 324
3.5 EXPERIMENTALLY GUIDED COMPUTATIONAL PREDICTION 325
3.5.1 Introduction 325
3.5.2 Applications and tools 326
3.6 CONCLUSIONS 329
3.7 PROTEIN DATA BANK (PDB) 329
3.8 SUMMARY 333
EXERCISES 334
REFERENCES 335
Chapter 4 Energetics and Protein Stability 355
4.1 BASIC PRINCIPLES OF THERMODYNAMICS 355
4.1.1 Introduction 355
4.1.2 Free energy and spontaneous processes 356
4.1.3 Enthalpy, entropy, and molecular thermodynamics 358
4.1.3.1 Enthalpy 358
4.1.3.2 Entropy 363
4.1.3.3 Computational approaches focus on individual interactions 364
4.1.4 Thermodynamics and protein structure 365
4.2 PROTEIN STABILITY AND FORCES INVOLVED 365
4.2.1 How stable are proteins? 365
4.2.2 Dominant driving forces 366
4.2.2.1 \quad Nonpolar interactions ($\Delta G_{n p}$) 367
4.2.2.2 Configurational entropy effect $\left(-T \Delta S_{\text {con }}\right)$ 369
4.2.3 Electrostatic interactions $\left(\Delta G_{e l e c}\right)$ 371
4.2.4 van der Waals interactions $\left(\Delta G_{v d W}\right)$ 375
4.2.5 Summary and conclusions 375
4.3 PROTEIN DENATURATION AND ADAPTATION TO EXTREME CONDITIONS 377
4.3.1 Denaturation as experimental tool 377
4.3.1.1 Temperature-dependent denaturation 378
4.3.1.2 $\quad \mathrm{pH}$-dependent denaturation 379
4.3.1.3 Pressure-induced denaturation 379
4.3.1.4 Chemical denaturation 379
4.3.2 Adaptation of proteins to extreme environments 380
4.3.3 Conclusions 382
4.4 STABILITY ENHANCEMENT OF INDUSTRIAL ENZYMES USING PROTEIN ENGINEERING 383
4.4.1 Enzymes in industry 383
4.4.2 Enzyme engineering 384
4.4.3 Rational engineering of enzymes for increased stability 3844.5 SUMMARY387
EXERCISES 388
REFERENCES 388
Chapter 5•Protein Dynamics 397
5.1 INTRODUCTION 397
5.2 PROTEIN FOLDING 400
5.2.1 Kinetic aspects 400
5.2.1.1 Levinthal's paradox and energy landscape theory 400
5.2.1.2 Folding models and mechanisms 403
5.2.2 In vivo folding 405
5.2.2.1 In vivo factors that complicate folding 405
5.2.2.2 Assisted folding 416
5.3 FOLDED STATE DYNAMICS 425
5.3.1 Spontaneous dynamics 426
5.3.1.1 Proteins are conformational ensembles 426
5.3.1.2 Statistical-thermodynamic view of protein dynamics 426
5.3.1.3 Dynamics of disordered proteins 428
5.3.1.4 Biological significance of thermally induced conformational changes 428
5.3.1.5 Effects of solvents on protein dynamics 433
5.3.2 External effects on protein dynamics 434
5.3.2.1 Ligand-induced dynamics and allostery 434
5.3.2.2 Dynamics induced by environmental changes 456
5.3.2.3 Enzyme-mediated protein dynamics 456
5.4 METHODS FOR STUDYING PROTEIN DYNAMICS 457
5.4.1 Tools for studying slow (ms-sec) to intermediate ($\mathrm{ns}-\mu \mathrm{s}$) motions 458
5.4.1.1 Tools for studying rapid motions (fs-ps) 460
5.5 SUMMARY 461
EXERCISES 462
REFERENCES 463
Chapter 6-Intrinsically Unstructured Proteins 477
6.1 INTRODUCTION 477
6.1.1 Molecular recognition 479
6.1.2 Entropic chain activity 482
6.2 SEQUENCE AND STRUCTURAL ORGANIZATION OF IUPs AND IDRs487
6.3 STRUCTURE-FUNCTION RELATIONSHIP 489
6.3.1 IUP binding to target proteins 489
6.3.1.1 IUPs are designed for fast protein binding and release 489
6.3.1.2 Mechanism and kinetics of binding-folding coupling in IUPs 492
6.3.1.3 Significance of PPII helix in IUPs 493
6.3.1.4 Disorder can be used for regulation 494
6.3.2 Entropy assistance-related roles 494
6.4 IUPs IN VIVO 495
6.5 SUMMARY 495
EXERCISES 496
REFERENCES 496
Chapter $7 \cdot$ Membrane-Bound Proteins 503
7.1 INTRODUCTION 503
7.2 STRUCTURE AND ORGANIZATION OF BIOLOGICAL MEMBRANES 506
7.2.1 General structure and properties 506
7.2.2 Composition of lipid bilayer 508
7.2.2.1 Glycerophospholipids 508
7.2.2.2 Sphingolipids 508
7.2.2.3 Sterols 511
7.2.2.4 Ethers 511
7.2.2.5 Variability 511
7.2.3 Lipid property effects on membranes 514
7.2.3.1 Amphipathicity 514
7.2.3.2 Asymmetry 514
7.2.3.3 Degree of order and thickness 515
7.2.3.4 Curvature 516
7.3 PRINCIPLES OF MEMBRANE PROTEIN STRUCTURE 518
7.3.1 Overview 518
7.3.2 Structures of integral membrane proteins 519
7.3.2.1 Primary structure 521
7.3.2.2 Secondary structure 530
7.3.2.3 Tertiary structure 532
7.3.3 Peripheral membrane proteins 552
7.4 PROTEIN-MEMBRANE INTERACTION 553
7.4.1 Lipid bilayer effects on membrane proteins 553
7.4.1.1 Effects of general bilayer properties 553
7.4.1.2 Effects of specific bilayer lipids 558
7.4.2 Effects of membrane proteins on lipid bilayer properties 565
7.4.2.1 Decrease in mobility 565
7.4.2.2 Deformation and curvature changes 565
7.5 G PROTEIN-COUPLED RECEPTORS 568
7.5.1 Introduction 568
7.5.2 GPCR signaling 569
7.5.2.1 General view 569
7.5.2.2 G-protein mechanisms and regulation 572
7.5.3 GPCR structure 575
7.5.3.1 General features 575
7.5.3.2 Structural variations among GPCRs 578
7.5.4 GPCR and G-protein activation 588
7.5.4.1 Structural changes in GPCRs upon activation 589
7.5.4.2 Agonist effect and G-protein activation 593
7.5.5 GPCR desensitization 600
7.5.6 GPCRs of other classes 601
7.5.6.1 Class B GPCRs 601
7.5.6.2 Class C GPCRs 607
7.5.6.3 Class F GPCRs 608
7.5.7 GPCR-targeting drugs 609
7.6 SUMMARY 613
EXERCISES 614
REFERENCES 616
Chapter 8 • Protein-Ligand Interactions 637
8.1 INTRODUCTION 637
8.2 THEORIES ON PROTEIN-LIGAND BINDING AND DYNAMICS 638
8.3 PROTEIN-LIGAND BINDING ENERGETICS 641
8.3.1 Total binding free energy 641
8.3.1.1 Protein-ligand binding displays diverse affinities 641
8.3.1.2 Calculating absolute binding free energy 643
8.3.1.3 Calculating relative binding energies 647
8.3.2 Thermodynamic determinants of binding energy 648
8.4 LIGAND-BINDING SITES 650
8.4.1 Overview 650
8.4.2 Geometric complementarity 650
8.4.3 Electrostatic complementarity 652
8.4.4 Binding specificity and promiscuity 654
8.5 PROTEIN-PROTEIN INTERACTIONS 665
8.5.1 Overview 665
8.5.2 Protein-protein binding domains 666
8.5.3 Structure-function relationships 667
8.5.3.1 Protein-protein interface 667
8.5.3.2 PPII helices in protein-protein interactions 676
8.5.4 Effect of molecular crowding on protein-protein interactions 677
8.6 PROTEIN-LIGAND INTERACTIONS IN DRUG ACTION AND DESIGN 679
8.6.1 Involvement of proteins in disease 679
8.6.2 How pharmaceutical drugs work 680
8.6.2.1 Principal modes of action 680
8.6.2.2 Selectivity and side effects 684
8.6.3 Drug development and design 685
8.6.3.1 General sources of pharmaceutical drugs 685
8.6.3.2 Drug development process 686
8.6.3.3 Principal steps in rational drug design 687
8.6.3.4 Rational drug design case study: ACE inhibitors 700
8.7 SUMMARY 713
EXERCISES 714
REFERENCES 715
Chapter 9 • Enzymatic Catalysis 729
9.1 INTRODUCTION 729
9.1.1 Metabolic needs of cells 729
9.1.2 Cellular processes must be catalyzed in order to sustain life 729
9.1.3 Why were enzymes selected as biocatalysts? 737
9.1.4 Why is it important to understand enzyme action? 739
9.1.5 Enzyme classification 739
9.1.5.1 Oxidoreductases (EC 1) 744
9.1.5.2 Transferases (EC 2) 753
9.1.5.3 Hydrolases (EC 3) 766
9.1.5.4 Lyases (EC 4) 774
9.1.5.5 Isomerases (EC 5) 778
9.1.5.6 Ligases (EC 6) 779
9.1.5.7 Catalytic promiscuity 781
9.2 ENZYME KINETICS 783
9.2.1 Basic concepts 784
9.2.2 Michaelis-Menten model 786
9.2.3 Use of Michaelis-Menten kinetic parameters for enzyme analysis 791
9.2.3.1 Enzyme-substrate affinity 791
9.2.3.2 Enzyme efficiency and specificity 792
9.2.3.3 Enzyme proficiency 794
9.2.4 Limitations of M-M formalism 794
9.3 HOW DO ENZYMES CATALYZE REACTIONS? 795
9.3.1 Overview 795
9.3.2 Binding specificity and selectivity 796
9.3.3 Catalysis 799
9.3.3.1 Substrate confinement 802
9.3.3.2 Electrostatic preorganization and noncovalent stabilization of transition state 803
9.3.3.3 Covalent catalysis and electronic polarization of substrate bonds 807
9.3.3.4 Metal ion catalysis 814
9.3.3.5 General acid-base catalysis 817
9.3.3.6 Mechanisms related to protein dynamics 821
9.4 ENZYME COFACTORS 824
9.4.1 Overview 824
9.4.2 Chemical characteristics of organic cofactors 830
9.4.3 Functional characteristics 833
9.5 ENZYME INHIBITION 833
9.5.1 Overview 833
9.5.2 Modes of enzyme inhibition 834
9.5.2.1 Reversible inhibition 835
9.5.2.2 Irreversible inhibition 845
9.6 INDUSTRIAL USES OF ENZYMES 848
9.6.1 Medical uses of enzymes 848
9.6.1.1 Drugs and drug targets 848
9.6.1.2 Diagnostic roles 849
9.6.2 Use of enzymes as industrial catalysts 850
9.6.3 Limitations and solutions 853
9.7 SUMMARY 855
EXERCISES 856
REFERENCES 868
APPENDIX: ENZYME NOMENCLATURE RECOMMENDATIONS OF THE NC-IUBMB 881
Index 891

